limit, Materi kelas XI, materi kelas XI semester II, Uncategorized

Limit Fungsi

1. Definisi dan Pengertian Limit

1.1. Definisi Limit

Berikut adalah definisi limit menurut Austin Louis Cauchy:

Sebuah fungsi f(x) mempunyai clip_image002[8] jika dan hanya jika untuk sembarang bilangan real clip_image002[10] maka terdapat bilangan real clip_image002[12] sedemikian hingga memenuhi:

clip_image002[14] maka clip_image002[16]

1.2. Pengertian Limit

Supaya lebih memahami pengertian limit, berikut disajikan contoh:

Perhatikan fungsi aljabar clip_image002[144]. Agar fungsi f(x) terdefinisi, nilai x dibatasi yaitu x ≠ 1. Jika batas nilai x tersebut didekati, akan diperoleh hasil bahwa nilai fungsi mendekati 3 seperti terlihat pada tabel berikut:

x

0,99

0,999

0,9999

0,99999

1

1,00001

1,0001

1,001

clip_image002[146]

2,9701

2,997001

2997

2,99997

3,00003

3,0003

3,003001

Pada kasus seperti di atas dikatakan limit clip_image002[148] untuk x mendekati 1 adalah 3, ditulis: clip_image002[150].

2. Limit Fungsi

clip_image002[18] artinya nilai x mendekati nilai a (tetapi x a) maka f(x) mendekati nilai L.

2.1. Sifat-Sifat Teorema Limit Fungsi

  1. clip_image002[20]
  2. clip_image002[36]
  3. clip_image002[22]
  4. clip_image002[24]
  5. Jika clip_image002[38] dan clip_image002[40] maka: clip_image002[42]
  6. clip_image002[26]
  7. clip_image002[28]
  8. clip_image002[30], untuk clip_image002[32]
  9. Jika clip_image002[44] maka: clip_image002[46] untuk L ≠ 0
  10. clip_image002[34]

2.2. Menentukan Nilai dari Suatu clip_image002[48]

  1. Jika f(a) = k maka clip_image002[50]
  2. Jika clip_image002[52] maka clip_image002[54]
  3. Jika clip_image002[56] maka clip_image002[58]
  4. Jika clip_image002[60] atau bentuk tertentu clip_image002[62] maka sederhanakan bentuk f(x) sehingga diperoleh bentuk f(a) seperti (1), (2), dan (3).

2.3. Limit Fungsi Tak Terhingga

  1. clip_image002[64]
  2. clip_image002[66] Jika pangkat tertinggi f(x) sama dengan pangkat tertinggi g(x)
  3. clip_image002[68] Jika pangkat tertinggi f(x) lebih kecil dari pangkat tertinggi g(x)
  4. clip_image002[70] Jika pangkat tertinggi f(x) lebih besar dari pangkat tertinggi g(x)

3. Limit Fungsi Aljabar

3.1. Limit Fungsi Aljabar Berhingga

  1. Jika f(a)=C, maka nilai clip_image002[72]
  2. Jika clip_image002[74], maka nilai clip_image002[76]
  3. Jika clip_image002[78], maka nilai clip_image002[82] disederhanakan dulu menjadi bentuk 1, 2, atau 3

3.2. Limit Fungsi Aljabar Tak Terhingga

Menentukan nilai clip_image002[92] atau clip_image002[90]:

  1. Jika n = m maka clip_image002[94]
  2. Jika n > m maka clip_image002[96]
  3. Jka n < m maka clip_image002[98]

4. Limit Fungsi Trigonometri

Untuk menghitung nilai limit fungsi trigonometri digunakan rumus-rumus berikut:

  1. clip_image002[100]
  2. clip_image002[102]
  3. clip_image002[104]
  4. clip_image002[106]

Kemudian, secara umum dapat menggunakan langkah-langkah cepat seperti di bawah ini:

  1. clip_image002[108]
  2. clip_image002[110]
  3. clip_image002[112]
  4. clip_image002[114]
  5. clip_image002[116]
  6. clip_image002[118]
  7. clip_image002[120]
  8. clip_image002[122]

Jika terdapat fungsi cos maka ubahlah ke dalam bentuk sebagai berikut:

  1. cos x diubah menjadi clip_image002[124]
  2. clip_image002[126] diubah menjadi clip_image002[128]

Berikut adalah sifat-sifat teorema limit fungsi geometri lainnya:

  1. clip_image002[130]
  2. clip_image002[132]
  3. clip_image002[134]
  4. clip_image002[136]
  5. clip_image002[138]
  6. clip_image002[140]
  7. clip_image002[142]

5. Kontinuitas

Suatu fungsi kontinu di x = a jika:

  1. f(a) real
  2. clip_image002[154]
  3. clip_image002[156]

kontinuitas

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s